

MATHEMATICS STANDARD LEVEL PAPER 2

Friday 8 May 2009 (morning)

1	hour	30	min	ιtΔc
- 1	nour	20		utes

C	andi	date	sessi	on n	umb	er	
С							

INSTRUCTIONS TO CANDIDATES

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- A graphic display calculator is required for this paper.
- Section A: answer all of Section A in the spaces provided.
- Section B: answer all of Section B on the answer sheets provided. Write your session number on each answer sheet, and attach them to this examination paper and your cover

sheet using the tag provided.

- At the end of the examination, indicate the number of sheets used in the appropriate box on your cover sheet.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.

Blank page

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working, e.g. if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

SECTION A

Answer **all** the questions in the spaces provided. Working may be continued below the lines, if necessary.

1.	[Maximum mark: 5]	
	In an arithmetic series, the first term is -7 and the sum of the first 20 terms is 620.	
	(a) Find the common difference.	[3 marks]
	(b) Find the value of the 78 th term.	[2 marks]

2. [Maximum mark: 7]

The circle shown has centre O and radius 3.9 cm.

Points A and B lie on the circle and angle AOB is 1.8 radians.

(a)	Find AB.	[3 marks]
(b)	Find the area of the shaded region.	[4 marks]

3. [Maximum mark: 6]

Let $f(x) = \frac{3x}{2} + 1$, $g(x) = 4\cos\left(\frac{x}{3}\right) - 1$. Let $h(x) = (g \circ f)(x)$.

		- · ·		•	7		
((a)	Find an	expression	for	h (x)

[3 marks]

- 1	Th`	١	Writa	down	tha	period	αf	h
١.	U	,	WIIIC	uown	uic	periou	UΙ	n

[1 mark]

	(c)	Write	down	the	range	αf	h
- (C) wille	uown	une	range	01	n

[2 marks]

•			 					•		 				٠			•	•		 	•			-		•	•		 			-	•

													 									 				 . .
													 									 				 . .

4.	[Maximum mark: 6]	
	A random variable X is distributed normally with mean 450 and standard deviation	n 20.
	(a) Find $P(X \le 475)$.	[2 marks]
	(b) Given that $P(X > a) = 0.27$, find a.	[4 marks]

5. [Maximum mark: 6]

Two lines with equations $\mathbf{r}_1 = \begin{pmatrix} \mathbf{r}_1 & \mathbf{r}_2 \\ \mathbf{r}_3 & \mathbf{r}_4 \end{pmatrix}$	$\begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix} + s \begin{pmatrix} 5 \\ -3 \\ 2 \end{pmatrix}$	and $\mathbf{r}_2 = \begin{pmatrix} 9 \\ 2 \\ 2 \end{pmatrix}$	$+t\begin{pmatrix} -3\\5\\-1\end{pmatrix}$	intersect at the
point P. Find the coordinates of	Р.			

6. [Maximum mark: 7]

In a geometric series, $u_1 = \frac{1}{81}$ and $u_4 = \frac{1}{3}$.

(a) Find the value of r. [3 marks]

(b) Find the smallest value of n for which $S_n > 40$. [4 marks]

.....

.....

7.	[Maximum	mark:	81

In any given season, a soccer team plays 65 % of their games at home. When the team plays at home, they win 83 % of their games. When they play away from home, they win 26 % of their games.

The team plays one game.

(a)	Find the probability that the team wins the game.		
(b)	If the team does not win the game, find the probability that the game was played at home.		

Do NOT write on this page.

SECTION B

Answer all the questions on the answer sheets provided. Please start each question on a new page.

8. [Maximum mark: 15]

A fisherman catches 200 fish to sell. He measures the lengths, l cm of these fish, and the results are shown in the frequency table below.

Length l cm	0 ≤ <i>l</i> < 10	$10 \le l < 20$	$20 \le l < 30$	$30 \le l < 40$	40 ≤ <i>l</i> < 60	$60 \le l < 75$	$75 \le l < 100$
Frequency	30	40	50	30	33	11	6

(a) Calculate an estimate for the standard deviation of the lengths of the fish.

[3 marks]

(b) A cumulative frequency diagram is given below for the lengths of the fish.

(This question continues on the following page)

Do NOT write on this page.

(Question 8 (b) continued)

Use the graph to answer the following.

- (i) Estimate the interquartile range.
- (ii) Given that 40 % of the fish have a length more than k cm, find the value of k.

[6 marks]

In order to sell the fish, the fisherman classifies them as small, medium or large.

Small fish have a length less than 20 cm.

Medium fish have a length greater than or equal to 20 cm but less than 60 cm. Large fish have a length greater than or equal to 60 cm.

(c) Write down the probability that a fish is small.

[2 marks]

The cost of a small fish is \$4, a medium fish \$10, and a large fish \$12.

(d) Copy and complete the following table, which gives a probability distribution for the cost \$X.

[2 marks]

Cost \$X	4	10	12
P(X=x)		0.565	

(e) Find E(X). [2 marks]

Do NOT write on this page.

9. [Maximum mark: 15]

Let $f(x) = ax^2 + bx + c$ where a, b and c are rational numbers.

(a) The point P(-4, 3) lies on the curve of f. Show that 16a - 4b + c = 3.

[2 marks]

(b) The points Q(6, 3) and R(-2, -1) also lie on the curve of f. Write down two other linear equations in a, b and c.

[2 marks]

(c) These three equations may be written as a matrix equation in the form AX = B,

where
$$X = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$
.

- (i) Write down the matrices A and B.
- (ii) Write down A^{-1} .
- (iii) Hence or otherwise, find f(x).

[8 marks]

(d) Write f(x) in the form $f(x) = a(x-h)^2 + k$, where a, h and k are rational numbers.

[3 marks]

10. [Maximum mark: 15]

Let $f(x) = x^3 - 4x + 1$.

(a) Expand $(x+h)^3$.

[2 marks]

(b) Use the formula $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ to show that the derivative of f(x) is $3x^2 - 4$.

[4 marks]

(c) The tangent to the curve of f at the point P(1, -2) is parallel to the tangent at a point Q. Find the coordinates of Q.

[4 marks]

(d) The graph of f is decreasing for p < x < q. Find the value of p and of q.

[3 marks]

(e) Write down the range of values for the gradient of f.

[2 marks]